
1© 2018 Mellanox Technologies

SC Asia 2018
Ido Shamay

RDMA over ML/DL and
Big Data Frameworks

2© 2018 Mellanox Technologies

Exponential Data Growth Everywhere

Cloud Big
Data

Enterprise

Business
Intelligence

HPC

Storage

Security

Machine
Learning

Internet
of Things

3© 2018 Mellanox Technologies

Neural Networks Complexity Growth

2014 2015 2016 2017

DeepSpeech DeepSpeech-2

DeepSpeech-3

30X

2013 2014 2015 2016

AlexNet GoogleNet
ResNet

Inception-V2

350X

Inception-V4

Image

Recognition

Speech

Recognition

PolyNet

4© 2018 Mellanox Technologies

Distributed Training use case

▪Training with large data sets and the ever increasing neural networks can
take long time
▪ In some cases even weeks

▪In many cases training need to happen frequently
▪ Model development and tuning
▪ Real life use cases may require retraining regularly

▪Accelerate training time by scale out architecture
▪ Add workers (nodes) to reduce training time
▪ Like in HPC.

▪2 type of parallelism are now popular:
▪Data parallelism
▪Model parallelism

5© 2018 Mellanox Technologies

Model and Data Parallelism

Main Model/Parameter Server/Allreaduce

Local

Model

Mini

Batch

Mini

Batch

Mini

Batch

Mini

Batch

Mini

Batch

Local

Model

Local

Model

Local

Model

Local

Model

Local

Model

Mini

BatchData Data

Model Parallelism Data Parallelism

6© 2018 Mellanox Technologies

Model Parallelism

▪Models size is limited by the compute engine (GPU for
example)

▪ In some cases the model doesn’t fit in compute
▪ Large models
▪ Small compute such as FPGAs

▪Model parallelism slice the model and run each part on
different compute engine

▪Networking become a critical element

▪High bandwidth, low latency are mandatory
Data Data

7© 2018 Mellanox Technologies

Data Parallelism

▪Data Parallelism communication is network intensive

▪ Vast amount of data is distributed to a lot of different compute
elements.

▪ Training engines need to coordinate their neural networks
weights and resynchronized with each other to get a cumulative
benefit.

▪ That synchronization is a performance bottleneck and requires
High bandwidth, as models become larger and larger
▪ Number of weights is increasing in exponential growth.

▪ Usually characterized with Bursts on the network, as computing
elements are synchronized.

Efficient Networking is a Key to Enable Data Parallelism

8© 2018 Mellanox Technologies

Data Parallelism

▪ Synchronous:
▪ Workers start the training step together (synchronized) with the same variables.
▪ Each worker compute gradients towards the global variables with its data (mini batch).
▪ Gradients are synchronized between all workers
▪ Either by sending it to parameter servers, which then average it.
▪ Or using collectives operations.

▪ The averaged gradient is enforced on the global parameters
▪ Everyone starts a new step.
▪ Effect on the training is that of the accumulated mini batch.

▪ Asynchronous:
▪ Workers fetch model variables independently.
▪ Each worker compute gradient it updates the global variables.
▪ Very stochastic process.

9© 2018 Mellanox Technologies

Spark’s Shuffle use case

Shuffle Write Shuffle ReadBroadcast block

locations

Worker nodes write their intermediate data

blocks (Map output) into local storage, and list

the blocks by partition

The master node broadcasts a combined list of

blocks, grouped by partition

Each reduce partition fetches all of the blocks

listed under its partition – from various nodes

in the cluster

▪ Shuffling is the process of redistributing data across partitions (AKA repartitioning)

10© 2018 Mellanox Technologies

Spark’s Shuffle use case

Map

Reduce task

M
a
p

R
e
d
u
c
e

Map

Map

Map

Map

Input Map output

File

File

File

File

File

Driver

Reduce task

Reduce task

Reduce task

Reduce task

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks

Fetch blocks

11© 2018 Mellanox Technologies

Three Major Computing Categories

▪ Scientific Computing
▪ Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant Programming Model

▪ Many discussions towards Partitioned Global Address Space (PGAS)
▪ UPC, OpenSHMEM, CAF, UPC++ etc.

▪ Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC)

▪ Relatively small-sizes message (order of kilobytes)

▪ CPU-based communication buffers

▪ Deep Learning
▪ Caffe, CNTK, TensorFlow, and many more

▪ Widespread popularity of accelerators like Nvidia GPUs

▪ Most of the frameworks are exploiting GPUs to accelerate training

▪ Diverse range of applications –Image Recognition, Cancer Detection, Self-Driving Cars, Speech Processing etc.

▪ Unusually large message sizes (order of megabytes)

▪ Most communication based on GPU buffers

▪ Big Data/Enterprise/Commercial Computing
▪ Focuses on large data and data analysis

▪ Spark and Hadoop (HDFS, HBase, MapReduce)

▪ Memcached is also used for Web 2.0

12© 2018 Mellanox Technologies

Three Major Computing Categories

NVMe,
NVMe Over Fabrics

Big Data
Storage

SQL & NoSQL
Database

Deep
Learning

HPC

GPUDirect

RDMA

MPI

NCCL
SHARP

Image , Video
Recognition

Sentiment Analysis

Fraud &
Flaw

Detection

Voice Recognition
& Search

Hadoop / Spark

Software
Defined
Storage

13© 2018 Mellanox Technologies

How do those applications looks like ?

▪ Most of the time application is doing computation
▪ Which is what actually interests the users

▪ Parallel communication and computation
▪ Start non-blocking send / receive
▪ Compute the data for next phase
▪ Wait for completion of all requests

▪ Typical application flow:
▪ Init:

▪ Read input file
▪ Decompose the problem

▪ Work Loop:
▪ Compute
▪ Data exchange

▪ Finalize:
▪ Write output file

14© 2018 Mellanox Technologies

The secret sauce

▪ Low Latency (< 1 usec)

▪ High Bandwidth (> 100 Gb/s)

▪ Scalability
▪ Efficient support for communications on large

▪ OS bypass (direct access to the hardware from the user level)

▪ Remote Direct Memory Access (avoid memory copies in communication on stack)
▪ Read, Write, Atomics

▪ Offloads
▪ Collective operations, support for non-contiguous data, GPU-Direct, Peer-Direct, tag-matching, etc.

▪ Low software overheads

▪ Low memory footprint (as much as possible)

▪ Performance portable APIs

15© 2018 Mellanox Technologies

What Is RDMA?

▪ Stands for “Remote Direct Memory Access”
▪ Advanced transport protocol (same layer as TCP and UDP)

▪ Modern RDMA comes from the Infiniband L4 transport specification.
▪ Full hardware implementation of the transport by the HCAs.
▪ Flow control and reliability is offloaded in hardware.

▪ Remote memory READ/WRITE semantics (one sided) in
addition to SEND/RECV (2 sided)

▪ RoCE: RDMA over Converged Ethernet
▪ The Infiniband transport over UDP encapsulation.
▪ Available for all Ethernet speeds 10 – 100G

▪ Verbs: Low level abstract description of the functionality for
RDMA programming.
▪ Control path and data path verbs.
▪ Several APIs – main one is libibverbs – standard Linux Verbs API.
▪ Same abstraction for IB/RoCE/iWARP.

▪ Supported on almost all mid-range/high-end network adapters
▪ Growing cloud support

16© 2018 Mellanox Technologies

RDMA Verbs basics

▪Uses Kernel bypass / direct user space access
▪ Supports Zero-copy – no need to copy user application buffers to

a dedicated NIC buffers.

▪ Application may scatter/gather to upper layer applications buffers
directly.

▪ Direct user space - hardware interface which bypasses the kernel
and TCP/IP in data path

▪ Sub-microsecond latency.
▪ CPU utilization – CPU not involved in the DMA operations.
▪ High Bandwidth.

App

buffer

Socket

s

TCP/IP

Driver

Network Adapter

C
o

n
tro

l

DMA

D
a
ta

Kernel

Context

17© 2018 Mellanox Technologies

The Transport types
▪ Queue Pair is the actual object that transfers data

▪ It encapsulates both Send and Receive Queue

▪ A QP represent a real HW resource

▪ Connecting QPs – manually or through rdma-cm (defined in Infiniband transport specification).

▪ UD – Unreliable Datagram
▪ implements only two-sided communication semantics.

▪ Single MTU at a time.

▪ Connectionless – single QP per process (AV in send/recv)

▪ RC – Reliable Connected
▪ Support RDMA and large messages in transport

▪ Limited number of RC channels, to preserve HCA resources - Every channel is an RC QP

▪ DC - Dynamically Connected (Mellanox)
▪ dynamically creates and destroys connections

▪ memory consumption close to the level of

▪ UD, while offering memory semantics, as RC

18© 2018 Mellanox Technologies

The IB Transport Layer
▪ The InfiniBand transport uses the queue pair (QP) model

▪ send and a receive queue are used for issuing and receiving Messages respectively.

▪ A work request is submitted to these queues, where the hardware can read it to perform the
communication.

▪ Additionally, a completion queue is associated with each queue pair for notification of communication
completion.

19© 2018 Mellanox Technologies

Memory management in RDMA applications
▪ Communication over RDMA Verbs requires all memory regions that are accessed by the hardware to

be registered (the famous ibv_reg_mr verb).
▪ Pinned and mapped for the hardware as physical address by the IB core drivers.

▪ Memory Region is a virtually contiguous memory block that was registered, i.e. prepared for work with
RDMA.
▪ Any memory buffer in the process’ virtual space can be registered

▪ May specify which permission to allow (remote/local).

▪ After a successful memory registration, two keys are being generated: lkey and rkey

▪ In order to alleviate the overheads of memory registration, short messages can be inline in the work
requests, whereas larger messages can take advantage of a zero-copy protocol.

▪ This strategy means that the work request gets only a description of the memory buffer and later reads
the data directly from the buffer, without any CPU involvement.

▪ Some advanced features (Mellanox)
▪ ODP – on demand paging avoidpinningthepagesofregisteredmemoryregions

▪ UMR - support direct local and remote noncontiguous memory access
▪ Avoid packing at sender and unpacking at receiver

20© 2018 Mellanox Technologies

Peer to Peer communication

▪ Direct data transfer between PCI-e devices without the need to use main memory
▪ No need for temporary storage in CPU memory.

▪ Also control of peers directly from other peer devices
▪ Accelerate transfers between different PCI-E devices

▪ Improve latency, system throughput, CPU utilization, energy usage
▪ Cut out the middleman

CPU

Chip

set

Chipset
Vendor

Device

CPU

Chip

set

Chipset
Vendor

Device

21© 2018 Mellanox Technologies

Mellanox PeerDirect™

▪ Natively supported by Mellanox OFED

▪ Supports peer-to-peer communications between Mellanox adapters and third-party devices

▪ No unnecessary system memory copies & CPU overhead

▪ Enables GPUDirect™ RDMA, GPUDirect™ ASYNC, ROCm and others

▪ InfiniBand and RoCE

CPU

Chip

set

Chipset
Vendor

Device

CPU

Chip

set

Chipset
Vendor

Device

0101001011

Designed for Deep Learning Acceleration

22© 2018 Mellanox Technologies

NVIDIA GPUDirect™ RDMA

23© 2018 Mellanox Technologies

Example

cudaMalloc(&s_buf_d, size);

s_buf_h = malloc(size, …);

mr = ibv_reg_mr(pd, s_buf_h, size, …);

.

.

// Want to send the CUDA buffer

cudaMemcpy(s_buf_h, s_buf_d, size..);

wr.sg_list->addr = s_buf_h;
wr.sg_list->lkey = mr.lkey;

wr.sg_list->length = size;

ibv_post_send(qp, &wr, …);

cudaMalloc(&s_buf_d, size);

mr = ibv_reg_mr(s_buf_d, size, …);

.

.

.

wr.sg_list->addr = s_buf_d;
wr.sg_list->lkey = mr.lkey;

wr.sg_list->length = size;

ibv_post_send(qp, &wr, …)

24© 2018 Mellanox Technologies

How does it work ?

▪ Allow ibv_reg_mr() to register peer memory.
▪ Peer devices implement new kernel module – io_peer_mem

▪ Register with RDMA subsystem - ib_register_peer_memory_client()

▪ io_peer_mem implements the following callbacks :
▪ acquire() – detects whether a virtual memory range belongs to the peer

▪ get_pages() – asks the peer for the physical memory addresses matching the memory region

▪ dma_map() – requests the bus addresses for the memory region

▪ Matching callbacks for release: dma_unmap(), put_pages() and release()

25© 2018 Mellanox Technologies

Before GPUDirect™

▪ GPUs use driver-allocated pinned memory buffers for transfers

▪ RDMA use user pinned buffers for communication

▪ It was impossible for RDMA drivers to pin memory allocated
by the GPU

▪ Userspace needed to copy data between the GPU driver’s
system memory region and the RDMA memory region

26© 2018 Mellanox Technologies

GPUDirect™ / GPUDirect™ P2P

▪ GPU and RDMA device share the same “pinned” buffers

▪ GPU copies the data to system memory
RDMA device sends it from there

▪ Eliminate the need to make a redundant copy in CUDA host memory

27© 2018 Mellanox Technologies

GPUDirect™ RDMA / PeerDirect™

▪ CPU synchronizes between GPU tasks and data transfer

▪ HCA directly accesses GPU memory

▪ Direct path for data exchange

▪ Eliminate the need to make a redundant copy in host memory

28© 2018 Mellanox Technologies

GPUDirect™ ASYNC

▪ GPUDirect RDMA (3.0) – direct data path between the GPU and Mellanox interconnect
▪ Control path still uses the CPU

▪ CPU prepares and queues communication tasks on GPU
▪ GPU triggers communication on HCA
▪ Mellanox HCA directly accesses GPU memory

▪ GPUDirect ASYNC (GPUDirect 4.0)
▪ Both data path and control path go directly

between the GPU and the Mellanox interconnect

Maximum Performance
For GPU Clusters

29© 2018 Mellanox Technologies

GPUDirect™ Async / PeerDirect™ Async

▪ Control the HCA from the GPU
▪ Enable batching of multiple GPU and communication tasks

▪ • Reduce latency

▪ • Reduce CPU utilization

▪ • Light weight CPU

▪ • Less power

▪ CPU prepares and queues compute and communication tasks on GPU

▪ GPU triggers communication on HCA

▪ HCA directly accesses GPU memory

30© 2018 Mellanox Technologies

Code example GPUDirect™ RDMA

while(fin) {
gpu_kernel <<<… , stream>>>(buf);
cudaStreamSynchronize(stream);
ibv_post_send(buf);
ibv_poll_cq(cqe);

}

31© 2018 Mellanox Technologies

Code example GPUDirect™ ASYNC

while(fin) {
gpu_kernel <<<… , stream>>>(buf);
gds_stream_queue_send(stream, qp, buf);
gds_stream_wait_cq(stream, cqe);

}

32© 2018 Mellanox Technologies

How does it work ?

▪ Create a QP ->Mark it for PeerDirect Async -> Associate it with the peer

▪ Post work requests using ibv_post_send()
▪ Doorbell is not ringed

▪ Use ibv_peer_commit_qp() to get bytecode for committing all WQEs
▪ currently posted to the send work queue

▪ Queue the translated bytecode operation on the peer

▪ Peer executes the operations after generating outgoing data

33© 2018 Mellanox Technologies

So now what ?

▪ So RDMA is really a P2P memory semantics programing.
▪ Also the 2 sided SEND/RECV must be in order.
▪ Application needs to know what/when came from the RDMA

and use it when it wants.

▪ Applications (sometimes – depends on its nature) need
message passing semantics protocol on top of the RDMA.

▪ So application usually need to implement messaging protocol
over the RDMA.
▪ So operations are based on identifiers of the application (like in MPI tags)
▪ Sender specifies which message to send when ready.
▪ Receiver specifies which message it expect to receive in a given moment.

Memory

P1

Memory

P2

Memory

P3

Verbs API

Application API

34© 2018 Mellanox Technologies

Point to Point message protocols (MPI)

▪ Eager
▪ Sender sends the tag+data to receiver
▪ Send() is completed immediately*

▪ (unless sender is using zero-copy)

▪ Receiver must store the data until it’s matched
▪ May exhaust memory on the receiver
▪ Typically used for small-medium messages
▪ Usually means no GPUDirect RDMA

▪ Rendezvous
▪ Sender sends only the tag to the receiver
▪ Send() is not completed
▪ Receiver requests the data from the sender when it matches the tag
▪ Data can be stored directly to the receiver buffer, since it’s already matched

▪ use RDMA for zero-copy receive

▪ Typically used for large messages

▪ Configurable threshold for protocol switch

35© 2018 Mellanox Technologies

Rendezvous example

App SEND msg X

RNDV_RECV_DONE

RTS(+rkey)

RDMA_READ

App RECV msg X

Tag match X

Completed X

Completed X

Buffer

rkey

Free buffer

36© 2018 Mellanox Technologies

Protocol threshold calculation: rendezvous vs.
eager (From MXM)
▪ Estimate performance of each protocol

▪ Based on: wire speed, latency overhead, registration cost, …

▪ Find the point where one protocol is better than another
▪ The intersection point is the threshold

For InfiniBand EDR:
▪ eager zcopy bandwidth (x=message size):

▪ Rendezvous RDMA bandwidth:

▪ Threshold: ~30k

memreg cost memcpy bw
send overhead

memreg cost fabric latency send overhead
wire speed

Rendezvous/eager

threshold

37© 2018 Mellanox Technologies

Common pitfalls

▪ Rendezvous and Zero-copy are different things
▪ The relation between them is that zero-copy on receiver side can be

done only with rendezvous (or hardware assisted tag matching)

▪ Scale
▪ Which transport to use ?
▪ Maybe hold set of multiple transport resources per use case ?

▪ Zero copy can be slower
▪ Zero copy improves CPU usage, not bandwidth*
▪ Whether zero copy is useful or not depends on the application.

▪ GPU Direct RDMA edge cases
▪ Not in all cases GPUDirect RDMA zero copy is better
▪ Depends on the topology of the peers (GPU and HCA), can also depends

on the message size.

▪ Memory
▪ All buffers must be registered, how many buffers to use.
▪ Bounce buffers may be needed.

38© 2018 Mellanox Technologies

UCX – Unified Communication X

▪ So maybe we need all this expertise in one place ?

▪ Collaboration between industry, laboratories, and academia

▪ Open-source production grade communication framework for HPC and data-driven
applications

▪ Goal is to enable the highest performance through co-design of software-hardware
interfaces

▪ Simple and consistent API

▪ Protocols and transports are selected by capabilities and performance estimations, rather
than hard-coded definitions.

39© 2018 Mellanox Technologies

UCX stack

Applications

MPICH, Open-MPI, etc. RPC, Machine Learning, etc. PGAS/SHMEM, UPC, etc. SPARK, Hadoop, etc.

UC-P (Protocols) – High Level API
Transport selection, cross-transport multi-rail, fragmenetaion, emulation of unsupported operations

UC-T (Hardware Transports) – Low Level API
Send/Recv, RMA, Atomic, Tag-matching, Active Message

UC-S

(Services)
Common Utilities

Message Passing API Domain:

send/receive, tag matching

I/O API Domain:

Stream

Task Based API Domain:

Active Messages

PGAS API Domain:

Remote memory access

Transport for RoCE/IB Verbs Transport for GPU memory

access

Other transports

RC DCT UD CUDA ROCM
shared

memory
Gemini

Utilities
Data

structures

Memory

managemen

t

CudaOFA Verbs Driver ROCM

Hardware

U
C

X

40© 2018 Mellanox Technologies

UCP API – send/receive

▪ Non-blocking send:
ucs_status_ptr_t ucp_tag_send_nb(ucp_ep_h ep, const void
*buffer, size_t count, callback cb,

...)

▪ Non-blocking receive:
ucs_status_ptr_t ucp_tag_recv_nb(ucp_worker_h worker,
void *buffer, size_t count, callback cb

...);

41© 2018 Mellanox Technologies

Collectives

▪ So RDMA only support a message passing from one process to another. In this sense, these commands are
called point-to-point communication commands.

▪ In many other occasions, we want to let one process to send data to all the other processes, or gather
data from all the processes to one process.
These operations are called collective communications.

▪ In theory, collective communication can be achieved by a combination of point-to-point communications,
but using collective communications make the code simpler and maybe faster.

▪ There are numerous algorithms to perform every collective operations (active academic research)
▪ Optimized for different scales / message sizes / networks

▪ Examples: Recursive doubling, Pairwise exchange, Fain-in, fan-out, Reduce-scatter/Allgather, Linear,
Bruck, etc..

▪ Mellanox HCOLL - hierarchical collectives, based on point-to-point, multicast, core-direct.

42© 2018 Mellanox Technologies

▪ TensorFlow
▪ Native RDMA support distributed TensorFlow:

▪ “verbs” – Donated primarily by Yahoo
▪ “gdr” – with GPUDirect RDMA - Donated Bairen Yi (HKUST).

▪ Via OpenMPI and NCCL2 for Horovod distribution.

▪ Caffe2: Support with GLOO
▪ Supports peer to peer and collectives with native RDMA

▪ Microsoft Cognitive Toolkit: Native support of MPI (OpenMPI)

▪ Paddle Paddle: Native support

▪ NVIDIA NCCL: Native and NCCL2

▪ Spark – RDMA support (add spark logo)

All Major Machine Learning Frameworks Support
RDMA

Cognitive Toolkit

http://chainer.org/

43© 2018 Mellanox Technologies

TensorFlow
▪ TensorFlow is an open source software library for numerical

computation using data flow graphs

▪ Second generation deep learning system from Google. (based on
DistBeleif framework)

▪ Front-end in python/C++ for model definition.

▪ Runtime backend in C++, linear algebra packages and GPU support.

▪ Model design transparent to infrastructure/scale:
▪ Abstracts away the underlying hardware.
▪ Same program for different infrastructure.

▪ Nodes in the graph represent mathematical operations, while the
graph edges represent the multidimensional data arrays (tensors)
communicated between them.

▪ Graph is all Operations and Tensors (and maybe also devices)

44© 2018 Mellanox Technologies

Distributed TensorFlow
▪ Tensor flow has built in support for distributed execution.

▪ Sessions - Actual runtime lifting of a graph.
▪ Translate graph definition to executable operation distributed across devices

(compute resources). Devices – CPU/GPUs.
▪ Nodes/operations placement on devices.
▪ May add SEND/RECEIVE nodes – where a Tensor traverse two different

devices.

▪ Running a TensorFlow cluster:
▪ Running TensorFlow server program, with one or more worker, on each

node.
▪ Use the devices scatters around the cluster in the TensorFlow graph.
▪ TensorFlow server class can be implemented by others to add extra support

▪ Like in the case of the RDMA implementations.
▪ All the RDMA plugins use the default GRPC layer by adding the RDMA backbone

and only implement the RendezvousMgr interface.

▪ The SEND/RECV nodes communicate with each other
by an abstract Rendezvous interface, supplied to the SEND/RECV
kernels in their construction phase by the session.

45© 2018 Mellanox Technologies

The TensorFlow Rendezvous Interface
▪ A non-blocking Send operation, which

receive the Tensor it needs to send and
its device information (which device
holds this tensor, memory allocator for
this tensor memory).

▪ An asynchronous Receive operation
which is supplied with a callback function
(to be called when the Tensor is ready)
and device information of where to place
this Tensor when calling the callback. Send Recv

Tensor T

Data (Device)

Metadata: shape, size, type

Operation Operation

Tensor T

Data (Device)

Metadata: shape, size, type

Rendezvous Send:
T, device

Non blocking

Rendezvous Recv:
step_id, Callback(T)

Asynchronus

Callback

46© 2018 Mellanox Technologies

The RendezvousMgr Interface
▪ TensorFlow allows for external implementations of RendezvousMgr to be “plugged” in.

▪ The SEND/RECV nodes use the above functionally of the abstract Rendezvous interface,
without really knowing which Rendezvous implementation is being used (Implementation is
chosen by the session).

▪ Interface allows proprietary implementations of Rendezvous SEND/RECV and essentially
defers the entire Tensor passing mechanism (default is GRPC).

RendezvousMgrInterface

BaseRendezvousMgr

RdmaRendezvousMgr RpcRendezvousMgr GdrRendezvousMgr MPIRendezvousMgr

47© 2018 Mellanox Technologies

▪ First implementation was not using zero copy and used eager mode.
▪ Motivation was to save the memory registration operations.

▪ GPUDirect RDMA couldn’t have work since it worked only with pinned CPU buffer.

▪ That means there is always 1 copy for CPU tensors, and 2 copies for GPU tensors.

First verbs implementation example

48© 2018 Mellanox Technologies

TensorFlow GPUDirect RDMA
▪ In order to apply GPUDirect RDMA 0 copies approach:

▪ Reduce the CPU tensors copies to 0 (always)
▪ GPU tensors copies to 0 for RDMA compatible GPUs, and 1 for other GPUs.

▪ No longer allocate a fixed CPU buffer per tensor, since we want the write to be done directly
to the result Tensor’s buffer.

▪ The result Tensor is allocated on the receiver side BEFORE it sends the request. This way the
remote address and rkey can be delivered inside the request itself

▪ GDR’s (Bairen Wi) allocation theme:
▪ the result Tensor is allocated on an already registered memory region, whether it is a CPU tensor or a RDMA

compatible GPU Tensor.
▪ The Sent Tensor was already allocated at the moment of the SEND operation.
▪ So we can inherit and implement a new memory allocator which will do the registration automatically

On new GPU allocations, which usually are being allocated in big chunks (good for performance).

49© 2018 Mellanox Technologies

Example Results – Distributed TensorFlow

50© 2018 Mellanox Technologies

Tencent Amber Deep Learning Framework

▪ Provides 2X bandwidth than TCP in VGG
▪ Delivers 2.5X performance than TCP in localps mode
▪ Delivers 5X performance than TCP in default mode
▪ Provides 5X bandwidth than TCP in ego_network
▪ Linear scale up for CNN, VGG16 and AlexNet models

Mellanox RoCE Provides 2.5X Better Performance over TCP

Delivers 5X Better Network Bandwidth and Linear Scalability

51© 2018 Mellanox Technologies

2X Acceleration for Baidu

▪ Machine Learning Software from Baidu
▪ Usage: word prediction, translation, image processing

▪ RDMA (GPUDirect) speeds training
▪ Lowers latency, increases throughput
▪ More cores for training
▪ Even better results with optimized RDMA

~2X Acceleration for Paddle Training with RDMA

52© 2018 Mellanox Technologies

NCCL2.0 with RDMA

▪ Optimized collective communication library between CUDA devices.

▪ Easy to integrate into frameworks, as well as for traditional HPC (MPI)

▪ Runs on the GPUs using asynchronous CUDA kernels.

▪ Operates on CUDA pointers, operations tied to CUDA stream.

▪ Support Point-to-Point communications and collectives inter-node communications.
▪ Inter-node communication using Sockets or Infiniband verbs, with multi rail support, topology detection and automatic

use of GPUDirect RDMA.

▪ Optimal combination of NVLink,PCIe and network interfaces to maximize bandwidth and create rings
across node.

53© 2018 Mellanox Technologies

NCCL2 GPUDirect RDMA example

54© 2018 Mellanox Technologies

Mellanox Accelerates NVIDIA NCCL 2.0

50% Performanc
eImprovement

with NVIDIA® DGX-1 across
32 NVIDIA Tesla V100 GPUs
Using InfiniBand RDMA
and GPUDirect™ RDMA

55© 2018 Mellanox Technologies

Horovod

▪ Distributed training framework for TensorFlow

▪ Inspired by work of Baidu, Facebook, et al.

▪ Uses bandwidth-optimal communication protocols
▪ Makes use of RDMA (Both RoCE or InfiniBand)

▪ Seamlessly installs on top of TensorFlow via pip install horovod

▪ Named after traditional Russian folk dance where participants dance in a circle with linked hands

56© 2018 Mellanox Technologies

ChainerMN Depends on InfiniBand

▪ ChainerMN depends on MPI for inter-node communication
▪ NVIDIA® NCCL library is then used for intra-node communication between GPUs
▪ Leveraging InfiniBand results in near linear performance
▪ Mellanox InfiniBand allows ChainerMN to achieve ~72% accuracy.

Source: http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html

http://chainer.org/
http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html

57© 2018 Mellanox Technologies

ShuffleManager Plugin

▪ Spark allows for external implementations of ShuffleManagers to be
plugged in

▪Configurable per-job using: “spark.shuffle.manager”

▪ Interface allows proprietary implementations of Shuffle Writers and
Readers, and essentially defers the entire Shuffle process to the new
component

▪ SparkRDMA utilizes this interface to introduce RDMA in the Shuffle
process

SortShuffleManager

RdmaShuffleManager

58© 2018 Mellanox Technologies

SparkRDMA – Accelerate Apache Spark by 40%

▪ Shuffle Manager plugin for Apache Spark

▪ RDMA acceleration for Spark Shuffle transfers

▪ Open-source on GitHub: https://github.com/Mellanox/SparkRDMA

▪ Easy and seamless deployment, on a per-job basis
RD

MA

Vani

lla
x1.4

1
-30 20 70 120

Seconds

HiBench TeraSort

RD

MA

Vani

lla
x1.3

9
0 10 20

Seconds

GroupByKey

https://github.com/Mellanox/SparkRDMA

59© 2018 Mellanox Technologies

HDFS+RDMA

▪ All-new implementation of RDMA acceleration for HDFS
▪ Implements a new DataNode and DFSClient
▪ Data transfers are done in zero-copy, with RDMA

▪ Lower CPU, lower latency, higher throughput
▪ Efficient memory utilization

▪ Initial support:
▪ Hadoop: HDFS 2.6
▪ Cloudera: CDH 5.10

▪ Future:
▪ Erasure coding offloads on HDFS 3.X
▪ NVMeF

▪ 1.0 GA is scheduled for end of Q1 2018
▪ WRITE operations over RDMA
▪ READ operations still carried over TCP in this version

60© 2018 Mellanox Technologies

RDMA Proven Advantages

▪ RDMA delivers performance advantage over traditional TCP

▪ Machine Learning and HPC platforms share the same interconnect needs

▪ Scalable, flexible, high performance, high bandwidth, end-to-end connectivity

▪ Standards-based and supported by the largest eco-system

▪ Supports all compute architectures: x86, Power, ARM.

▪ Native Offloading architecture

▪ GPUDirect RDMA accelerations

▪ Backward and future compatible

61© 2018 Mellanox Technologies

Thank You

