Searching for activation functions

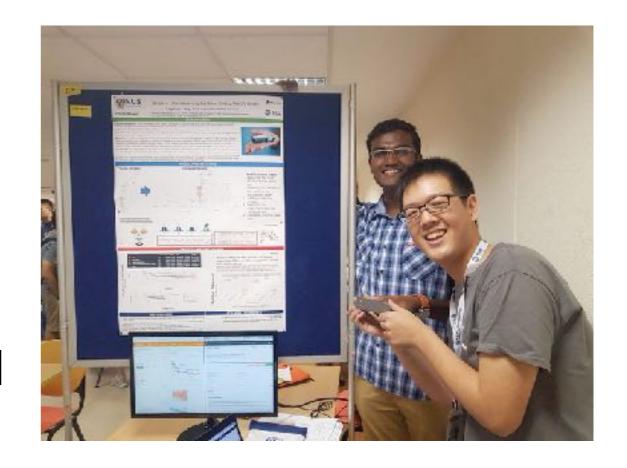
By Ang Ming Liang

About Me

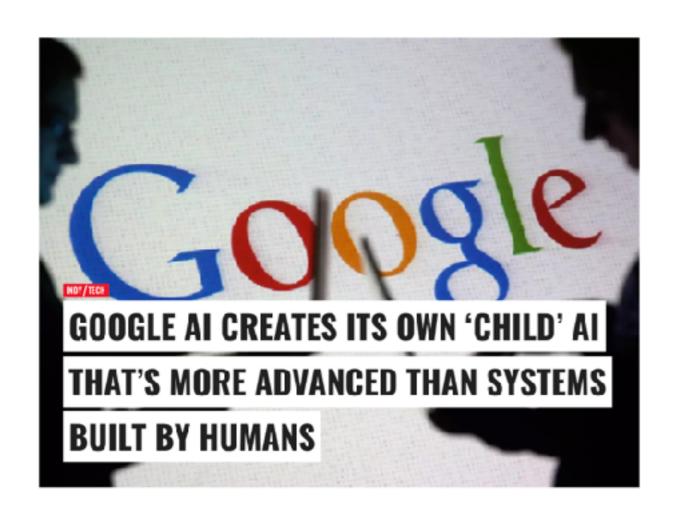
I am an Al enthusiast

Interested in solving general intelligence

Will enter NUS Computational Biology program in 2019



Motivation



I am calling BS

AutoML

Search

Why Google

Products

Solutions

Launcher

Pricing

Security

Customers

Documentation

Support

Partners

TRY IT FREE

CONTACT SALES

CLOUD AUTOML

Train high quality custom machine learning models with minimum effort and machine learning expertise

KEEP ME UPDATED

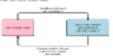
Train Custom Machine Learning Models

Cloud AutoML is a suite of Machine Learning products that enables developers with limited machine learning expertise to train high quality models by leveraging Google's state of the art transfer learning, and Neural Architecture Search technology.

AutoML Vision is the first product to be released. It is a simple, secure and flexible ML service that lets you train custom. vision models for your own use cases. Soon, Cloud AutoML will release other services for all other major fields of AL

Quoc Le papers

NEURAL ARCHITECTURE SEARCE WITH



Learning Transferable Architectures for Scalable Image Recognition

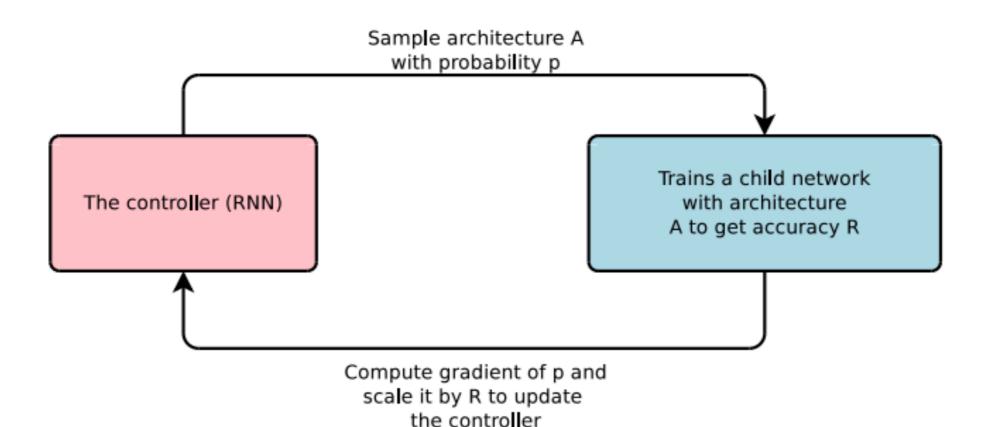
STARCHING FOR ACTIVATION PUNCTIONS

Efficient Neural Auchitecture Rearch via Rangester Sharing

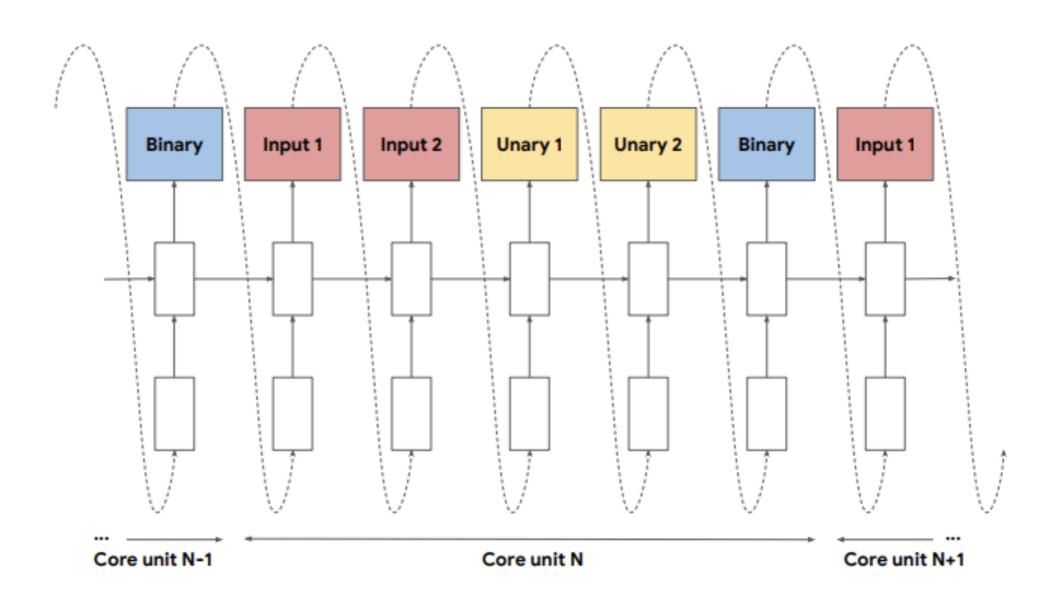
And More!

#OPmuch

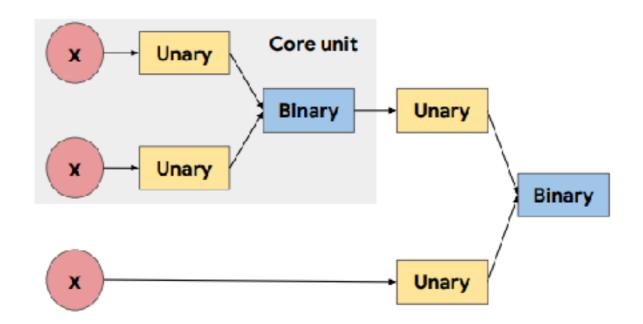
The idea



RNN part



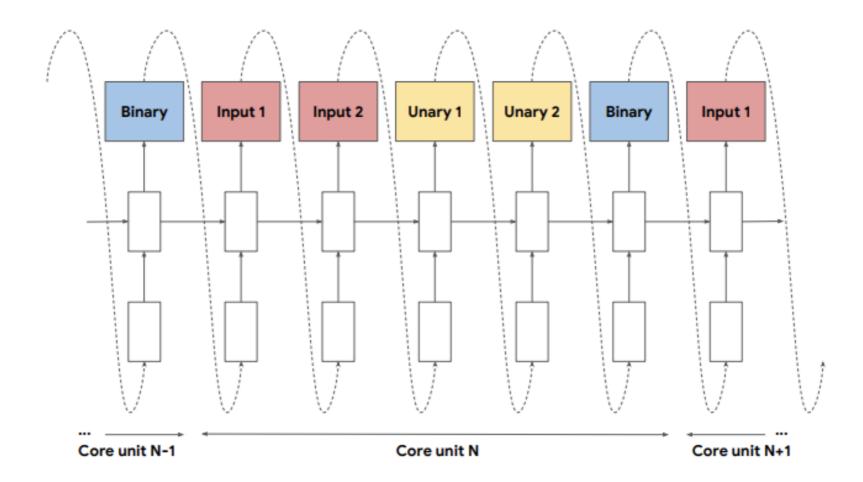
Sampling functions



Core unit $b(u_1(x_1), u_2(x_2)).$

Sampling functions

- Unary functions: $x, -x, |x|, x^2, x^3, \sqrt{x}, \beta x, x + \beta, \log(|x| + \epsilon), \exp(x) \sin(x), \cos(x), \sinh(x), \cosh(x), \tanh(x), \sinh^{-1}(x), \tan^{-1}(x), \operatorname{sinc}(x), \max(x, 0), \min(x, 0), \sigma(x), \log(1 + \exp(x)), \exp(-x^2), \operatorname{erf}(x), \beta$
- Binary functions: $x_1 + x_2$, $x_1 \cdot x_2$, $x_1 x_2$, $\frac{x_1}{x_2 + \epsilon}$, $\max(x_1, x_2)$, $\min(x_1, x_2)$, $\sigma(x_1) \cdot x_2$, $\exp(-\beta(x_1 x_2)^2)$, $\exp(-\beta|x_1 x_2|)$, $\beta x_1 + (1 \beta)x_2$



Policy Gradients

Update the **policy directly** to maximise the expected long term rewards!

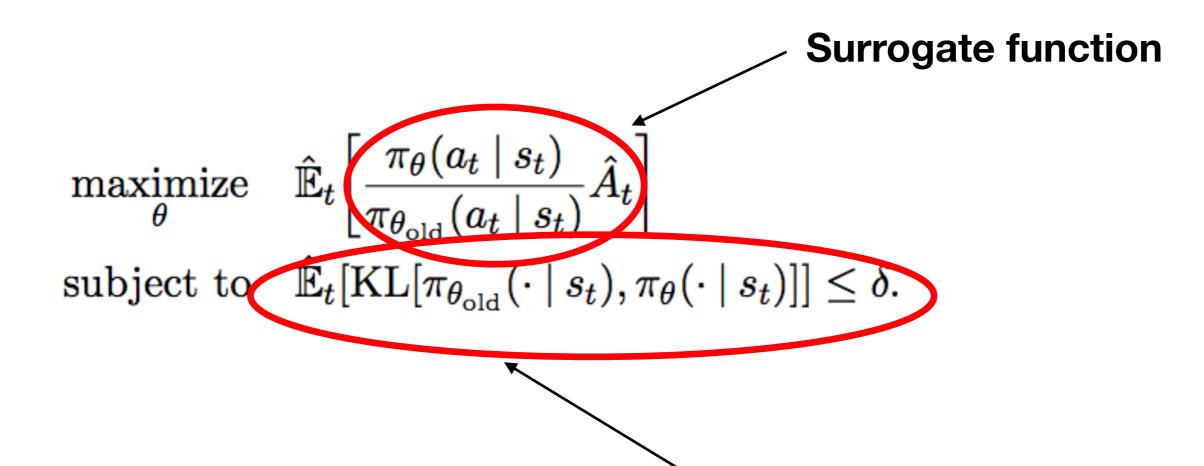
$$\hat{g} = \hat{\mathbb{E}}_t \left[\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \hat{A}_t \right]$$

$$\hat{A}_t = \delta_t + (\gamma \lambda) \delta_{t+1} + \dots + (\gamma \lambda)^{T-t+1} \delta_{T-1},$$
where $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$

Leads to destructively large policy update!

Agent loss function

Trust Region Methods



Constraint based on the the size of the policy update

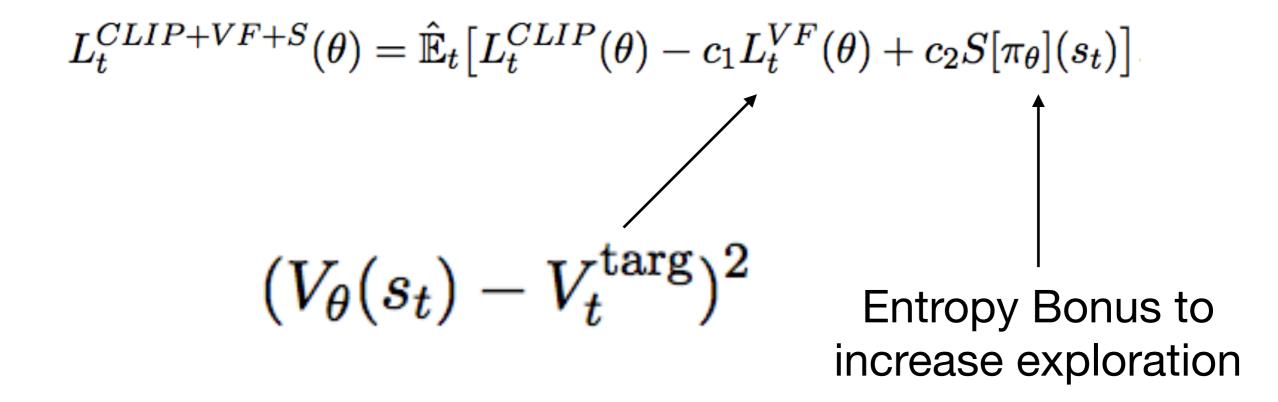
Clipped Surrogate

$$: \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right].$$

$$\operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A}_t)$$

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

Putting everything together



Proximal Policy Optimisation

Algorithm 1 PPO, Actor-Critic Style

```
\begin{array}{l} \textbf{for iteration}{=}1,2,\dots\, \mathbf{do} \\ \textbf{for actor}{=}1,2,\dots,N \textbf{ do} \\ \textbf{Run policy } \pi_{\theta_{\mathrm{old}}} \textbf{ in environment for } T \textbf{ timesteps} \\ \textbf{Compute advantage estimates } \hat{A}_1,\dots,\hat{A}_T \\ \textbf{end for} \\ \textbf{Optimize surrogate } L \textbf{ wrt } \theta, \textbf{ with } K \textbf{ epochs and minibatch size } M \leq NT \\ \theta_{\mathrm{old}} \leftarrow \theta \\ \textbf{end for} \\ \end{array}
```

Results

```
INFO:tensorflow:global_step/sec: 74.7513
INFO:tensorflow:loss = 2.307766, step = 15980378 (1.337 sec)
INFO:tensorflow:global_step/sec: 74.5161
INFO:tensorflow:loss = 2.2983985, step = 15980478 (1.342 sec)
INFO:tensorflow:global_step/sec: 74.6956
INFO:tensorflow:loss = 2.3078947, step = 15980578 (1.339 sec)
INFO:tensorflow:global_step/sec: 74.7885
INFO: tensorflow: loss = 2.3001652, step = 15980678 (1.337 sec)
INFO:tensorflow:global_step/sec: 74.809
INFO: tensorflow: loss = 2.3074267, step = 15980778 (1.337 sec)
INFO:tensorflow:global_step/sec: 76.1826
INFO: tensorflow: loss = 2.3065348, step = 15980878 (1.313 sec)
INFO:tensorflow:global_step/sec: 75.3713
INFO: tensorflow: loss = 2.3012478, step = 15980978 (1.327 sec)
INFO:tensorflow:global_step/sec: 75.647
INFO: tensorflow: loss = 2.3102431, step = 15981078 (1.322 sec)
INFO:tensorflow:global step/sec: 75.9671
INFO:tensorflow:loss = 2.310913, step = 15981178 (1.316 sec)
INFO:tensorflow:global_step/sec: 73.7092
INFO:tensorflow:loss = 2.3001149, step = 15981278 (1.357 sec)
INFO:tensorflow:global_step/sec: 74.0312
INFO: tensorflow: loss = 2.3001096, step = 15981378 (1.350 sec)
INFO: tensorflow:global_step/sec: 74.6679
INFO: tensorflow: loss = 2.3046515, step = 15981478 (1.340 sec)
```

```
Activation functions

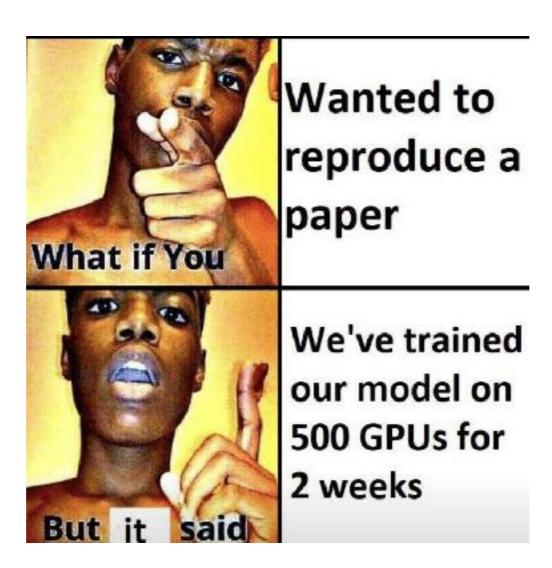
3x

1
-3
```

Negative result :(

Why did we fail?

1. Didn't train the model enough

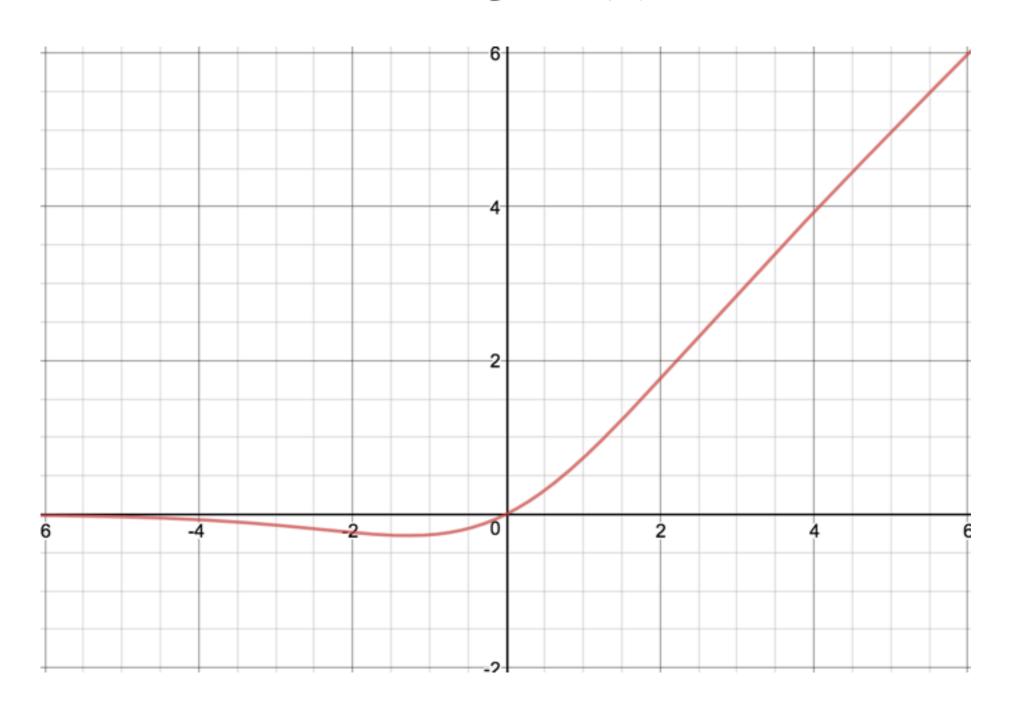


Why did we fail?

2. Local minima and saddle points

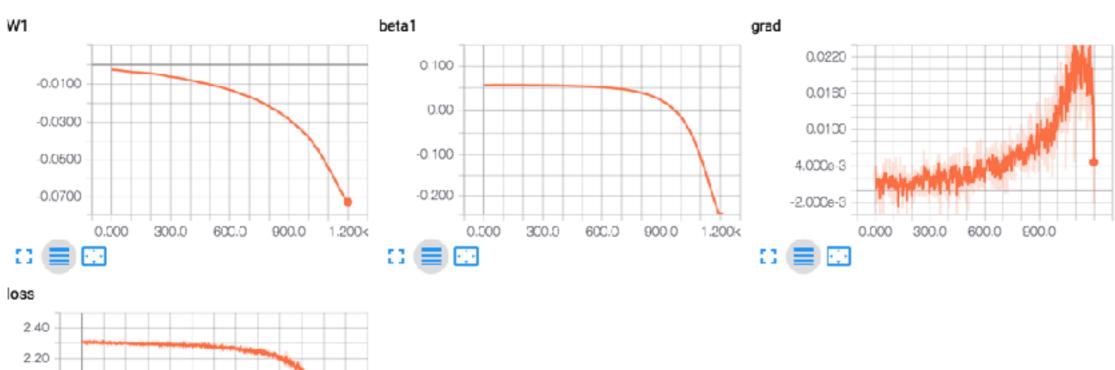
Swish

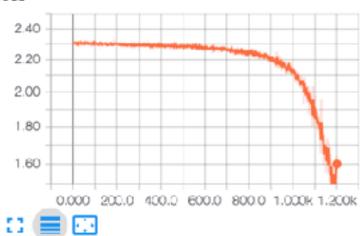
 $x \cdot sigmoid(x)$



Training using swish

Using SGD





Training using swish

Using RMSprop

1.00

0.00

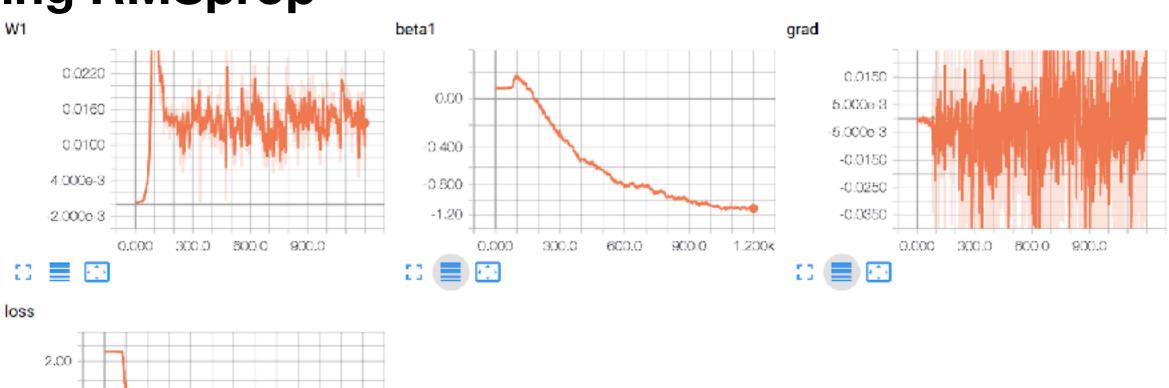
0.000

300.0

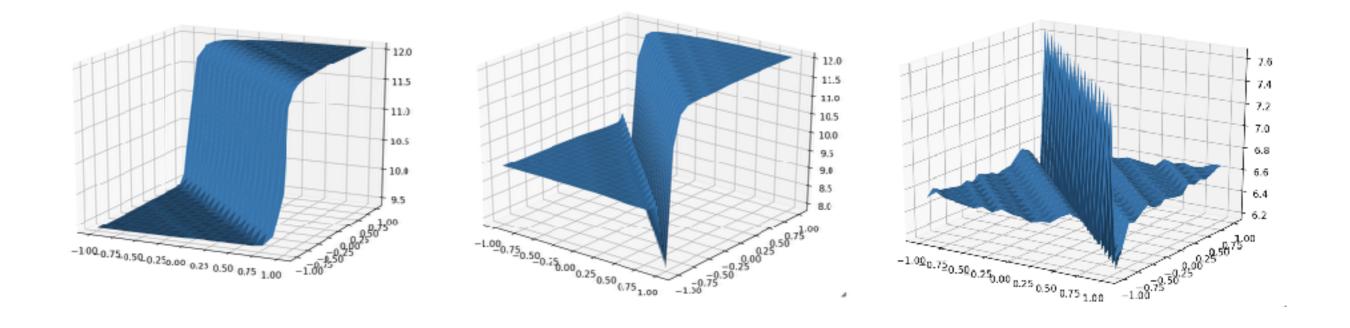
600.0

900.0

1.200k



Visualisation



SWISH

TANH

RELU

The future?

Hyperparameter search

AutoML

Github link

bit.ly/saf git

Thank you

Email: angmingliang4017ic@gmail.com

Facebook: Ang Ming Liang