MH-QEMU:
MEMORY-STATE-AWARE
FAULT INJECTION PEATFORM

Hideyuki JITSUMOTO*1, Yuya KOBAYASHI*3,
Akihiro NOMURA*1, Satoshi MATSUOKA*1*2

*1 Tokyo Institute of Technology, *2 RIKEN R-CCS,
*3 Degital Media Professionals Inc.

BACKGROUND AND MOTIVATIONS

OPTIMIZATION OF SDC TOLERANCE

® Detecting Silent Data Corruption(SDC)
Replication and comparison
Additional computing resource

Application Based Verification
Additional verification calculations depend on each application

[Optimization of cost and performance of SDC tolerance]

® Fault Injector

Verify OS’s and applications’ resiliency toward SDC such as where
should be protect on software

Verify performance of new SDC tolerance algorithms

CAUSE OF DATA CORRUPTION

® Mainly random single bit error happened by radiations

® Error depends on memory module implementation

Disturbance Error on DRAM
Data corruption on cell which is the neighbor from manipulated cell.

Deterioration on NVRAM
The Cell become unreliable after a limited number of erase cycles.

® Error mechanism is not clear on next-gen. memory module and new
memory usage algorithm

Hierarchical usage of different memory architecture
3D structured memory

[Fault injector needs to consider about hardware specific error]

Current fault injector supported random single bit error
Other error corrected and detected by ECC -> new ECC, new device

MH-QEMU: MEMORY-STATE-AWARE(MSA) FAULT
INJECTION PLATFORM

® Hardware specific fault injection platform which can make
error depends on memory access pattern and memory state:

emulates various hardware specific error by using memory access
pattern and memory state information

intercepts memory access and execute user defined code:
logging memory access pattern
injecting error when error occasion condition is satisfied

supporting tools for making flexible fault injection scenario and
analysis of the effects of fault

SDC INJECTION METHOD

® Injection to physical hardware (neutron/heavy ion beam)

Difficult to pinpoint SDC bits and timings
Damage to hardware

® Injection by program modification (code snippet, LLVM)
Difficult to emulate hardware specific fault

® Injection by Virtual Machine

treats memory modules on guest machine as the process memory
on host machine
— our work also use this method

RELATED WORK

® F-SEFI [Guen et al.]
VM-based fault injector
can intercept machine language instruction
Inject error to CPU logical circuit, registers, memory modules

Difference: MH-QEMU has supporting tool for injecting fault to
memory module flexibly

Real-time mapping an address used by a process on VM to physical
address and the reverse

Inject error only to memory module (currently)
(MH-QEMU may implements on F-SEFI...)

ESIGN

REQUIREMENTS OF MSA FAULT INJECTOR
(AND MODULES)

® no damage to physical hardware

VM-based
® emulating MSA faults flexibly without any effects into VM
Injection of faults from host OS to VM (MM:memory mapper)

Definition of memory access handler for each instruction for
memory state modification (MH: memory handler)

Scheduling fault injection (FS: fault injection scheduler)

® supporting tools for injecting fault flexibly and analysis of the

effects of fault
APIs for getting memory usage information of VM from host OS

(ADM: application-data mapper)

BASIC SCENARIO OF MH-QEMU:

NORMAL MEMORY ACCESS
[Application] ® Application accesses to the
[Guest oS] VMM memory on host OS via

the guest OS
()
4 A

VMM Mergory Manager
. \ / J

Host o{\l\;llslrl\r;lo for J J

BASIC SCENARIO OF MH-QEMU:
ACCESS PATTERN AND STATE INFO

RMATION

. ® Memory Handler (MH)
[Appllcatlon]
How to occur errors
[Guest (013] Call for each memory access
Recoding access pattern
4 Checking condition for fault
injection
~ Injecting fault if the condition is
VMM Memory Manager 1 satisfied
MM
L []

e

\.

Memory for
Host O{VMM J [Shareable Memory Area]J

BASIC SCENARIO OF MH-QEMU:
REMAPPING VMM MEMORY TO SHARABLE AREA

[Application] ® Memory Mapper (MM)
How to access VM memory from
[Guest (0133] host OS
e N\ Change memory area from the area
managed by VMM to shareable area
[MH] (such as tmpfs)
e Host OS can operate VM’s memory
VMM Memory Manager via the shareable area
S -

e

Memory for
Host O{VMM J [Shareable Memory Area]J

\.

BASIC SCENARIO OF MH-QEMU:

® Ex. Error occurs frequent
[Application] accessed bit
MH recodes access count
[G”eSt 0S MH checks access count for each
- memory bit
1) Recode and Check When access count become over
the threshold, MH modifies
4 shareable memory area via MM
VMM Memory Manager
2) Inject error I
S \§
3) Continue to access
f v
Host O \“;'I‘\',’I’“','Iwy for Sha{ﬂ?ble Memory Area]J
_

SUPPORTING TOOLS

® Application-Data Mapper (ADM)
converts application name to physical address and the reverse
MH-QEMU can inject error to specified application on VM
MH-QEMU can get application name from error-injected address
ADM also supply VMM’s mapping information (physical-virtual)

® Fault Injection Scheduler (FS)

executes time-based events
enables/disables other MH-QEMU modules

MH is high cost -> needs to apply on appropriate timing
Time-based error injection

@)%

ERVI

EW OF MH-Q

EMU

[Application m—> Memory Access
"*=*» Fault Injection
[Guest oS] = Providing
Phys.-Virt. Mapping
(MH-QEMU
modules
4 s
VMM Memory Manager - N
Fault
z Injection
: Scheduler
- \ :)
4 . -

.

Host O{Memory for J

VMM

{'ﬁﬁareable Memory Area]

MH-QEMU-based Access

IMPLEMENTATION
(MH & ADM)

MH: INTERCEPTION OF MEMORY ACCESS

® Modified Tiny Code Generator on QEMU

TCG = CPU virtualization module
Insert MH calling code to load and store instruction

Guest Code Host Code

Load/Store

QEMU’s TCG

ADM: MAPPING APP, AND PHY. ADDRESS

® OS information stored VM memory (Limitation: Linux)

can get via MM without interacting guest OS

® Symbol table of kernel

struct task_struct

struct task_struct

struct mm_struct *mm —

struct mm_struct *mm

Required OS Information
Page table

struct mm_struct

Process information

struct mm_struct |<

struct vm_area_struct
*mmap

—’Istruct vm_area_struc

struct vm_area_struc
*

nex
<
struct vm_area_struc

- managed by list structure {

pgd_t “pgd

All information can get from

kernel symbol by following the list connection

struct vm_area_struc
*

\—Astruct vm_area_struc

struct vm_area_struc
*

EXAMPLE OF MHA IMPLEMENTATION

® Injecting error on frequent accessed

bit on specific application

memory_access_handler(physaddr, virtaddr){
range <— ADM get heep addr(target name)e—""
if (virtaddr is in range){

count[virtaddr[++ <=

;

for(addr < each range){

if (count[addr] >= threshold){ <«

records addr <=
MM _flipbit(addr)e—

ADM_ write processinfo(target name) —

FS turnoffMe()
} \
h

;

gets application address range
counts memory access if accessed bit is

in the range
checks access count

flips the bit on the overrun address

Turn off MH for performance

HOST SERVER

CPU 2* Intel X5650 (2.67GHz, 6core/12thread) VT-x
Memory | ECC DDR4 SDRAM 48GB

0S CentOS 7.1 (Kernel 3.10.0)

VM SERVER (8YM/HOST)

CPU x86_64 Architecture

Memory | 512MB

0S Scientific Linux 7.4 (Kernel 3.10.0)

USECASE

USECASE: EVALUATION OF NPB CG RESILIENCE

® Injecting Row-hammer fault to Modified NPB CG

Row-hammer fault

By frequent access to a specific memory row, surrounding
rows get data corruption

Access count threshold = 1000, Error occasionrate = 5 x 10-10
Modified NPB CG

CG may have tolerance toward DC by iterative method

Original NPB CG has constant loop -> continue the loop until
it converges

Address Mapping rule: Intel 82955X-MCH

Physical Address

683 ... 17 16 156 14 13 12 11 1098 76543210

45 ... O o 1 =2 LS 8 7 e 5 4 3|0 210 XXX

Rowv Bank Column Channel Byte Offset

DISTRIBUTION OF COMPUTATION ERROR

® 2443 runs
0.6
0.5 55% of execution returns almost correct Abort: Detectable failed execution
4 answer
04
O
© 0.3
Y
0.2
Unknown set: inverse power method
0.1 .
does not have a local solution

O I ! I I I I I 1

oo oo oo oo oo oo o o o o o oo o o oo oo oo oo &
Q Q' V" V"V O Q" NV NV V" VO N" V" Q' Q' O O O
NP PR PR DD NN N A\ N

Modified CG has some resiliency

Error in result(X); width = 5%
toward row-hammer error]

RELATIONSHIP OF FAULT AND PROCESS
MEMORY REGION

® Pickup 825 runs of the previous

evaluation 300 -
ESDC
250 - l O Benign
® 500 B Abort
, =
® Only protect BSS region 5 150
Almost of data set to BSS... S
= 100
Specify protection area without
knowledge of CG algorithm 50 -
O]]]]]] |
® 2\ N\ \% N DO
Q> S S\Q \ \?52 e)
O \ < » O
© OQ,%% «Q/Q @ \%« O§k®

OVERHEAD OF MH-QEMU (REFERENCE)

® NPB 3.3.1 class B with 8 processes
® Exec. time comparison between QEMU and MH-QEMU

MM overhead is negligible
P CG MG

Showing MH overhead
Benchmark

OQEMU
= MH-QEMU

w

N
O = OO N O w o1 N
| I I |

® Blank MH (calling only)

—

Relative execution time
(native QEMU=1)

o

()

FT

CONCLUSION

® Develop MH-QEMU: Memory-state-aware fault injection
platform

For evaluate resiliency toward hardware specific error
and effects of error on next-gen. hardware

Easily implement flexible fault injection scenario on memory
module

Demonstrate resiliency evaluation by modified NPB CG that has
iterative calculation

FUTURE WORK

® Use appropriate application for demonstration
NPB CG is not suit -> HPCG ?
® Reducing execution cost
KVM and instruction level code insertion ? (dyinst, Intel PIN)

® Supporting other hardware

CPU circuit/register
Implement on F-SEFI ?

® Evaluating many applications about resiliency
optimizing SDC detection cost

