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Motivation
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We aren’t 
that good at 
estimating



Impact
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Lost 
Productivity
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Increased
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The Need for Resource Prediction
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Educating Users to provide better estimates is hard. 

Job resource usage generally can be predicted as 
applications tend to be repeatedly executed in HPC 
clusters.

Workload managers enforce scheduling policies 
based on job resource requirements (e.g. cores, 
memory size, job runtime limit, etc) 

Typically, Users are not very good at estimating a 
jobs memory requirements or run time, and will 
often over estimate - e.g. asking for all the memory 
on a node, even if the job only really needs a small 
amount.

This leads to significant resource wastage, with 
increased turnaround times and costs (especially 
for single node/high throughput workloads).



Large Memory in High Throughput Production LSF Clusters

| 7

Observation 1: Small number of large memory jobs 
consume most of job memory 

Observation 2: User specified memory sizes tend to 
be over-estimated with large errors

Observation 3: Small memory jobs tend to have 
short run time

Observation 4: Prediction quality for large memory 
jobs reduces with more small memory jobs 
considered in training sets 
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Problem Explored in This Study
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Design targets

• Improve prediction quality for large memory 
jobs with high coverage rates

• Reduce model training costs to enable frequent 
model updates

• Keep low model inference latency and reduce 
impacts on job submission

Problem 

• Improve job memory usage prediction for large 
memory jobs

• Administrators care more about the memory 
usage of large memory jobs

• Coarse grained memory requirements are 
acceptable for small memory jobs 
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Two-stage memory usage prediction
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Proposed method: combined two stage model to improve large memory job predictions

• A binary classification model to identify large memory jobs

• A regression model trained by only large memory jobs to predict large memory usage

Binary Classification Model

First-stage Prediction

Small memory jobs Large memory jobs

Training datasets

Regression Model

Second-stage Prediction

Evaluation datasets

Model Training

Model Training

Model Inference Is a large 
memory 
job?

Model Inference

Y

N Predict memory usage 
as min(1GB, user_specified_value)

Estimated Memory Usage
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Stage I: Memory Size Classification Efficiency 
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Binary classification model includes all jobs in 
training sets

– Good estimates should have large CR and small 
ICR

CR=#Hit_LMEM_Jobs/#Total_LMEM_Jobs

ICR=#Miss_SMEM_Jobs/#Total_SMEM_Jobs

– Without best hyper-parameter tuning, a binary 
classification model can have good estimates for 
testing traces

• Binary classification complexity is lower than 
multi-class classification or regression

• Classification accuracy can be further tuned 
with hyper-parameter settings

Prediction results with three production traces:
• Random forest model is used
• Hyper-parameters: n_estimators=50, n_jobs=10, 

max_depth=auto 
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Stage II: Regression Quality for Large Memory Jobs
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The second stage adopts regression model which trained with only large memory jobs

• Average prediction errors can be reduced by 40.7, 24.3 and 14.5 percent compared with the single model 
approach

• Remove noise of small memory jobs achieve better prediction accuracy
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Comparisons of prediction errors for three production traces: 
Random forest regression model with n_estimators=100 and n_jobs=10 is used for the tests
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Benefits of Two Mode Training Costs
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Binary classification cost is small due to its low training complexity

• The cost of the 2-stage regression model is significantly reduced due to removing large amounts of small 
memory jobs (noise)

• Running two models can be run in parallel due to no data dependency between two stage models

Comparisons of a) training cost in seconds and b) model training savings by training two-stage models sequentially or in parallel  
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Impacts on Model Inference Costs
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The proposed two stage model prediction will add one more inference steps for each job:

• Results show that inference overhead is very small, and in most cases could be ignored when compared to 
normal job submission latency (especially when submission filters are used)

• Model inference delay can be further hidden by running two models in parallel with additional computing 
resources 

Per-job average model inference latency  Total cost of model inference and overhead compared 
with single model approach
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Summary

| 14

Conclusions

– A small number of large memory jobs dominate the memory usage in these clusters

– The two-stage model approach can remove the noise of small memory jobs to get better prediction 
quality for large memory jobs

– The model achieves high prediction accuracy with little inference overhead.

– The model training costs can also be substantially reduced to enable possibility of frequent model 
updates

Future directions

– Further model tuning to minimize miss prediction for classifying large memory jobs

– Explore the application for predicting other job resource metrics. e.g. long running jobs
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Runtime Prediction
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Under-specifying runtime leads to:

• Jobs being killed - loss of productivity.

• Delayed execution for other users.

• Many organisations do not specify run limits as 
killing production workloads is unacceptable.

Over-specifying runtime leads to:

• Lower utilization - loss in productivity

• Poor backfill scheduling.

• Poor multi-cluster and hybrid cloud forwarding 
decisions
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