An Evaluation of Reducing Power Consumption in Taiwania 3 Supercomputer

Kuan-Chih Wang*¹, Chin-Hung Li*, Te-Ming Chen*, Steven Shiau*²

1: 2203071@narlabs.org.tw | 2: steven@narlabs.org.tw

Introduction

As a result of the ongoing compound global energy and recession-inflation crises, the rising electricity cost
presents an unforeseen challenge for HPC system operators like NCHC.

TAIWANIA 3

- NCHC observes distinct temporal variability (diurnal/seasonal scales) in the HPC system utilization of Taiwania 3.
 Furthermore, even when compute nodes are idle (i.e., not allocated for jobs), the CPUs still operate at the all-core turbo frequency, which unnecessarily wastes energy.
- NCHC investigates and pursues additional opportunities in reducing energy consumption without disrupting users.
- Hardware Specifications of
- Built in late 2020
- 900 compute nodes
- CPU

Dual-socket Intel Xeon Platinum 8280, **56 Cores**

Memory

Samsung DDR4-2933 ECC RDIMM, 384 GB

Storage

Local: Intel DC P4610 NVMe SSD, **3.2 TB**Global: IBM Spectrum Scale (GPFS), **9.4 PB**

Network

Mellanox ConnectX-5 Ethernet, **25 Gb/s**Mellanox ConnectX-6 InfiniBand HDR100, **100 Gb/s**

Methods

- 1. Advanced BIOS Configuration Tuning
 - Allow idle CPU cores to transition to higher C-states, resulting in better energy saving.
 - For C0 (i.e., normal working) state, prioritize efficiency (performance per watt, PPW) instead of raw performance.

Table 1. BIOS configuration tuned for energy saving and efficiency.

Socket Configuration

- Power/Performance Profile = High Performance
- Advanced Power Management Configuration
 - Hardware PM State Control
 - Hardware P-State = Native
 - CPU C State Control
 - Autonomous Core C-State = Enable
 - CPU Advanced PM Tuning
 - Energy/Performance Bias
 - Energy/Performance Bias = Balanced Performance

2. Enabling System Sleep

- Debug the RAID controller kernel driver issues that eventually lead to a system crash when attempting to suspend/resume. All compute nodes of Taiwania 3 are affected. This is resolved by manually upgrading the problematic kernel driver.
- Idle compute nodes are put into **Suspend-to-Idle** (i.e., **ACPI S0**) sleep state, and **awakened on demand** with the help of Slurm job scheduler.
- Stability and Usability Tests
 - Hundreds of consecutive suspend/resume cycles are performed to confirm that the problem is resolved.

Results

- a. At vendor-supplied **BIOS defaults**, the **idle power consumption** is **180 W/node**. The CPU core **C-state residency** indicates that idle CPU cores spend **>99%** of the time in **C1 state**. When in **C0 state**, all CPU cores are clocked at the **all-core turbo frequency** of 3.3 GHz.
- b. With **Method 1**, a **53% reduction** in idle power consumption (down to **84 W/node**) can be achieved, which translates to estimated **saving** of **62K NT\$/mon**. In contrast, the CPU core **C-state residency** indicates that idle CPU cores now spend **>99%** of the time in **C6 state** instead. When in **C0 state**, each CPU core is **underclocked** or **overclocked individually** depending on workloads.
- With Method 1+2, a 65% reduction in idle power consumption (down to 63 W/node) can be achieved, which translates
 to estimated saving of 75K NT\$/mon.
- Performance impact is around 1-2% for LINPACK. Transition latency to/from sleep state is around 20-30 sec.

Vendor Defaults

Method 1

 Currently, we have deployed the changes to one rack of compute nodes. We plan to continue monitoring and eventually roll out to all compute nodes.

0.07%

|0.08%|

	C0 Residency	C1 Residency	C6 Residency
Table 2. Statist	ics of CPU core	C-state residen	cy during idle.
17:00 17:06 17:12 17:18 17:24 17:30 17:36 17:42 17:48 17:54	16:36 16:42 16:48 16:54 17:00 17:06 17:12 17:18 17:24 17:30	17:36 08:12 08:18 08:24 08:30 08:36 08:42 08:48 08:54 09:00 0	99:06 09:12

99.93%

99.16%

0.75%

	technology-overview-technology-guide.pdf
	2. Intel Corporation. Linux Kernel User's and Administrator's Guide - System Sleep States. https://www.kernel.org/doc/html/v5.15/admin-guide/pm/sleep-states.html
	3. SchedMD. Slurm Workload Manager - Slurm Power Saving Guide. https://slurm.schedmd.com/power_save.html
	4. Len Brown. turbostat - Report processor frequency and idle statistics. https://manpages.debian.org/testing/linux-cpupower/turbostat.8
g idle.	

1. Intel Corporation. Power Management - Technology Overview.

References