
Jing Xu　Tasuku Hiraishi　Shingo Okuno Masahiro Yasugi Keiichiro Fukazawa
†1: Kyoto University (*: Presently with Fujitsu Limited) †2: Kyoto Tachibana University †3: Kyushu Institute of Technology

†1 †2 †1†1*

†3

†3

vertex itemsets
v1 {i1, i2, i3, i4}

v2 {i1, i5}

v3 {i1, i2, i4}

v4 {i1, i2, i3}

v5 {i1, i3}

v6 {i1, i3}

n2

Pruning 2

Pruning 3

Probrem definition

input

* θ = 2

COPINE Algorithm [J. Sese et al., 2010]

v1:
{i1, i2, i3, i4}

v6:
{i1}

v6:
{i1}

v6:
{i1}

v5:
{i1}

v5:
{i1}

v3:
{i1}

v2:
{i1}

v4:
{i1, i2, i3, i5}

v2:
{i1, i5}

v3:
{i1, i2, i4}

v5:
{i1, i3, i4}

v6:
{i1, i3, i5}

v6:
{i1, i3}

v4:
{i1, i2, i3}

v3:
{i1, i2, i4}

v4:
{i1, i2}

v5:
{i1, i3}

v6:
{i1, i3, i5}

v6:
{i1, i3}

v6:
{i1, i3}

v6:
{i1, i3}

v5:
{i1, i3}

v4:
{i1, i2}

n1

n2

root

v1 v2

v3

v4

v6

v5

 A depth-first tree algorithm for fining subgraphs with common
itemsets employing the pruning for three kinds of subtrees:

・

 In a parallel search (where a unique set of subtrees is assigned to
each worker), a certain constraint is put on a worker for Pruning 3
[S. Okuno et al., JIP 2014].

Itemset table for Pruning 3

Optimization
 Right-to-Left (RTL) Pruning

 Reducing the number of itemset table references
Given a threshold d = 2 for example, table access for Pruning 3 is per-
formed only at search steps when the degree of the last added vertex is
not less than 2.

 1. subgraph that has been already visited

 2. subgraph whose itemset is smaller than the threashold θ

 3. subgraph not being closed since one of its supergraphs has already
 been visited and their itemsets are identical

 Implementation
We implemented these mechanisms by modifying the existing

parallel COPINE implementation using the Tascell task-parallel
language.

Graph Mining for Finding Subgraphs with Common Itemsets

Optimization of Parallelized COPINE using Task Parallel Language Tascell

Output: all connected subgraphs G’ = (V ’, E’) of G that satisfies
 the following conditions:

search tree

Table before traversing
When adding a vertex to a current
subgraph during a search, the
common itemset of the resulting sub-
graph is added to the entry corre-
sponding to the added vertex.

・ On this occasion, if the table entry
contains a super-itemset of the item-
set being added, the search of the de-
scendants of the current search tree
node can be skipped.

Towards Optimization of Parallelized Mining of Subgraphs
Sharing Common Items Using a Task-Parallel Language

Towards Optimization of Parallelized Mining of Subgraphs
Sharing Common Items Using a Task-Parallel Language

Parallel COPINE Algorithm [S. Okuno et al., 2017]

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0

20

40

60

80

100

120

140

1 2 4 8 16 36

Execution time[s] (w/o d)

0

2000000

4000000

6000000

8000000

10000000

12000000

0

20

40

60

80

100

120

1 2 4 8 16 36

6E+08

7E+08

8E+08

9E+08

1E+09

1.1E+09

1.2E+09

1.3E+09

1.4E+09

1.5E+09

1.6E+09

0

10

20

30

40

50

60

70

0 4 8 12 16 20 24 28 32 36

Execution time[s] (w/o RTL pruning) Execution time[s] (w/ RTL pruning)

 Performance evaluation

Input: a real protein network, θ = 5

diameter = 12, each node has 9.42 items in average

Intel Xeon Broadwell 2.1GHz 18-core x 2

| V | = 15227, | E | = 225458, | I | = 158, avg. degree = 29.2,

 Problems in existing COPINE implementation:
 1. Right-to-Left (RTL) pruning is not allowed to avoid excessive pruning.
 Search space in parallel executions enlarges compared to sequential
 ones.
 2. Checking and updating an information table for pruning at every sea-
 rch step brings considerable overheads.

 Application: gene network
・ Vertex: gene
・ Edge: protein-protein interaction
・ Item: reactional drugs

common

common

root

v1
{i1, i2, i3, i4}

v3

v3 v4

v4

{ , , ,v 6 }v2 v3 v4

{i1, i2, i4} { ,v 6 }v4

{i1, i2 { ,v 6 }v5 }

{i1, i2 { ,v 6 }v5 }

v 6 v 6

v 6v 6

v 6

{i1 }{ i1 } { i1 }

{ i1 }{ i1 } {v 6 }

{v 6 }

{i1, i2, i4} {v4 }

worker 0 worker 1

Execution time[s] (w/o d)

Ex
ec

ut
io

n
tim

e[
s]

Ex
ec

ut
io

n
tim

e[
s]

Ex
ec

ut
io

n
tim

e[
s]

(#
 o

f v
is

its
 to

 v
er

tic
es

)/s
(#

 o
f v

is
its

 to
 v

er
tic

es
)/s

of

 v
is

its
 to

 v
er

tic
es

of visits to vertices (w/o RTL pruning) # of visits to vertices (w/ RTL pruning)

of visits to vertices/ s (w/o d) # of visits to vertices/ s (w/ d=2) # of visits to vertices/ s (w/ d=3)
Execution time[s] (w/ d=2) Execution time[s] (w/ d=3)

Execution time[s] (w/ d=2)
of visits to vertices/ s (w/o d) # of visits to vertices/ s (w/ d=2) # of visits to vertices/ s (w/ d=3)

Execution time[s] (w/ d=3)

of workers

of workers

of workers

A worker performs pruning
“from right to left” when certain
conditions are satisied, which
is not allowed in the existing
implementation.

()

 Effect of the threshold d (w/o RTL pruning)

Effect of the threshold d (w/ RTL pruning)

Effect of RTL pruning

