Towards Optimization of Parallelized Mining of Subgraphs Sharing Common Items Using a Task-Parallel Language

Jing Xu^{⁺¹} Tasuku Hiraishi⁺² Shingo Okuno^{+1*} Masahiro Yasugi⁺³ Keiichiro Fukazawa **†1:** Kyoto University (*: Presently with Fujitsu Limited) **†2:** Kyoto Tachibana University **†3:** Kyushu Institute of Technology

Graph Mining for Finding Subgraphs with Common Itemsets

Probrem definition

Input: graph G = (V, E), set of items I, items associated with each vertex $\mathfrak{I}(v) \in \mathfrak{P}(I)$, and threshold θ

Output: all connected subgraphs G' = (V', E') of G that satisfies the following conditions:

(1) $\left| \bigcap_{v \in V} \mathfrak{I}(v) \right| \geq \theta$ (2) $\left| \bigcap_{v \in V' \cup \{v'\}} \mathfrak{I}(v) \right| < \left| \bigcap_{v \in V'} \mathfrak{I}(v) \right|$

for any $v'(\notin V')$ connected to G'

Application: gene network

- Vertex: gene
- Edge: protein-protein interaction
- Item: reactional drugs

COPINE Algorithm [J. Sese et al., 2010]

- A depth-first tree algorithm for fining subgraphs with common itemsets employing the pruning for three kinds of subtrees:
 - 1. subgraph that has been already visited
 - 2. subgraph whose itemset is smaller than the threashold θ
 - 3. subgraph not being closed since one of its supergraphs has already been visited and their itemsets are identical
- Parallel COPINE Algorithm [S. Okuno et al., 2017]
- In a parallel search (where a unique set of subtrees is assigned to each worker), a certain constraint is put on a worker for Pruning 3 [S. Okuno et al., JIP 2014].
- Problems in existing COPINE implementation:
- 1. Right-to-Left (RTL) pruning is not allowed to avoid excessive pruning. Search space in parallel executions enlarges compared to sequential ones.

Optimization of Parallelized COPINE using Task Parallel Language Tascell

Reducing the number of itemset table references Given a threshold d = 2 for example, table access for Pruning 3 is performed only at search steps when the degree of the last added vertex is not less than 2.

Implementation

We implemented these mechanisms by modifying the existing parallel COPINE implementation using the Tascell task-parallel language.

Performance evaluation

- Intel Xeon Broadwell 2.1GHz 18-core x 2
- Input: a real protein network, $\theta = 5$ |V| = 15227, |E| = 225458, |I| = 158, avg. degree = 29.2,diameter = 12, each node has 9.42 items in average

24

• **Execution time**[s] (w/ RTL pruning)

• # of visits to vertices (w/ RTL pruning)

Effect of RTL pruning

of workers

1.6E+09

1.4E+09

1.3E+09

1.2E+09

1.1E+09

1E+09

6E+08

12000000

0000000

rtice

of

