Towards Optimization of Parallelized Mining of Subgraphs Sharing Common Items Using a Task-Parallel Language

Jing $\mathrm{Xu}^{\dagger 1}$ Tasuku Hiraishi ${ }^{\dagger 2}$ Shingo Okuno ${ }^{+1^{*}}$ Masahiro Yasugi ${ }^{+3}$ Keiichiro Fukazawa ${ }^{\dagger 1}$
$\dagger 1$: Kyoto University (*: Presently with Fujitsu Limited) †2: Kyoto Tachibana University \dagger : Kyushu Institute of Technology

Optimization of:Parallelized COPINE using Task Parallel Language Tascell

\square Optimization

- Right-to-Left (RTL) Pruning

\square Reducing the number of itemset table references
Given a threshold $\mathrm{d}=2$ for example, table access for Pruning 3 is performed only at search steps when the degree of the last added vertex is not less than 2.

Implementation

We implemented these mechanisms by modifying the existing parallel COPINE implementation using the Tascell task-parallel language.

\square Performance evaluation

■ Intel Xeon Broadwell 2.1GHz 18-core x 2

- Input: a real protein network, $\theta=5$ $|V|=15227,|E|=225458,|I|=158$, avg. degree $=29.2$, diameter $=12$, each node has 9.42 items in average

